Skip to contents

Overview

‘HuBMAP’ data portal (https://portal.hubmapconsortium.org/) provides an open, global bio-molecular atlas of the human body at the cellular level. HuBMAPR package provides an alternative interface to explore the data via R.

The HuBMAP Consortium offers several APIs. To achieve the main objectives, HuBMAPR package specifically integrates three APIs:

  • Search API: The Search API is primarily searching relevant data information and is referenced to the Elasticsearch API.

  • Entity API: The Entity API is specifically utilized in the bulk_data_transfer() function for Globus URL retrieval

  • Ontology API: The Ontology API is applied in the organ() function to provide additional information about the abbreviation and corresponding full name of each organ.

Each API serves a distinct purpose with unique query capabilities, tailored to meet various needs. Utilizing the httr2 and rjsoncons packages, HuBMAPR effectively manages, modifies, and executes multiple requests via these APIs, presenting responses in formats such as tibble or character. These outputs are further modified for clarity in the final results from the HuBMAPR functions, and these functions help reflect the data information of HuBMAP Data Portal as much as possible.

Using temporary storage to cache API responses facilitates efficient data retrieval by reducing the need for redundant requests to the HuBMAP Data Portal. This approach minimizes server load, improves response times (e.g. datasets() takes less than 4 seconds to retrieve more than 3500 records’ information, shown below), and enhances overall query efficiency. By periodically clearing cached data or directing them to a temporary directory, the process ensures that the retrieved information remains relevant while managing storage effectively. This caching mechanism supports a smoother and more efficient user experience when accessing data from the portal.

HuBMAP Data incorporates three different identifiers:

  • HuBMAP ID, e.g. HBM399.VCTL.353

  • Universally Unique Identifier (UUID), e.g. 7036a70229eff1a51af965454dddbe7d

  • Digital Object Identifiers (DOI), e.g. 10.35079/HBM399.VCTL.353.

The HuBMAPR package utilizes the UUID - a 32-digit hexadecimal number - and the more human-readable HuBMAP ID as two common identifiers in the retrieved results. Considering precision and compatibility with software implementation and data storage, UUID serves as the primary identifier to retrieve data across various functions, with the UUID mapping uniquely to its corresponding HuBMAP ID.

The systematic nomenclature is adopted for functions in the package by appending the entity category prefix to the concise description of the specific functionality. Most of the functions are grouped by entity categories, thereby simplifying the process of selecting the appropriate functions to retrieve the desired information associated with the given UUID from the specific entity category. The structure of these functions is heavily consistent across all entity categories with some exceptions for collection and publication.

Installation

HuBMAPR is a R package. The package can be installed by

if (!requireNamespace("BiocManager")) {
    install.packages("BiocManager")
}
BiocManager::install("HuBMAPR")

Install development version from GitHub:

remotes::install_github("christinehou11/HuBMAPR")

Basic User Guide

Implementation Notes

This session is to provide a guidance on extending or customizing the HuBMAPR package to accommodate potential future changes in data structure, enhancing the package’s long-term utility. We included a brief outline to illustrate the basics of the principles and approach to package design.

  • Identify an API end point

  • Provide an R client to translate R data structures to the arguments and parameters required by the API

  • Handle the response in a consistent way with respect to argument and response validation

  • Format the return value as a ‘tibble’ or ‘character’ to minimize cognitive demands on the user for interpreting the result, and to facilitate incorporation into general R workflows

Load Necessary Packages

Load additional packages. dplyr package is widely used in this vignettes to conduct data wrangling and specific information extraction.

Data Discovery

HuBMAP data portal page displays chronologically (last modified date time) five categories of entity data:

  • Dataset

  • Sample

  • Donor

  • Publication

  • Collection.

Using corresponding functions to explore entity data.

system.time({
    datasets_df <- datasets()
})
#>    user  system elapsed 
#>   0.764   0.031   3.781
object_size(datasets_df)
#> 1.04 MB

datasets_df
#> # A tibble: 3,691 × 14
#>    uuid        hubmap_id dataset_type dataset_type_additio…¹ organ analyte_class
#>    <chr>       <chr>     <chr>        <chr>                  <chr> <chr>        
#>  1 997e75072d… HBM236.G… 10X Multiome ""                     Ovar… ""           
#>  2 7036a70229… HBM399.V… Histology    ""                     Lung… "Nucleic aci…
#>  3 c15f813973… HBM399.S… Histology    ""                     Lung… ""           
#>  4 ca302925f0… HBM234.V… Histology    ""                     Larg… "Nucleic aci…
#>  5 aed6880fb3… HBM958.B… Histology    ""                     Larg… "Nucleic aci…
#>  6 b0c21c4002… HBM875.H… Histology    ""                     Larg… "Nucleic aci…
#>  7 bfda5e0865… HBM793.K… Histology    ""                     Larg… "Nucleic aci…
#>  8 baf976734d… HBM468.M… Histology    ""                     Smal… "Nucleic aci…
#>  9 57b475b8ad… HBM579.L… Histology    ""                     Smal… "Nucleic aci…
#> 10 856aa4e05b… HBM433.H… Histology    ""                     Smal… "Nucleic aci…
#> # ℹ 3,681 more rows
#> # ℹ abbreviated name: ¹​dataset_type_additional_information
#> # ℹ 8 more variables: sample_category <chr>, status <chr>,
#> #   dataset_processing_category <chr>, pipeline <chr>, registered_by <chr>,
#> #   donor_hubmap_id <chr>, group_name <chr>, last_modified_timestamp <chr>

samples(), donors(), collections(), and publications() work same as above.

The default tibble produced by corresponding entity function only reflects selected information. To see the names of selected information, use following commands for each entity category. Specify as parameter to display information in the format of "character" or "tibble".

# as = "tibble" (default)
datasets_col_tbl <- datasets_default_columns(as = "tibble")
datasets_col_tbl
#> # A tibble: 14 × 1
#>    columns                            
#>    <chr>                              
#>  1 uuid                               
#>  2 hubmap_id                          
#>  3 group_name                         
#>  4 dataset_type_additional_information
#>  5 dataset_type                       
#>  6 organ                              
#>  7 analyte_class                      
#>  8 dataset_processing_category        
#>  9 sample_category                    
#> 10 registered_by                      
#> 11 status                             
#> 12 pipeline                           
#> 13 last_modified_timestamp            
#> 14 donor_hubmap_id

# as = "character"
datasets_col_char <- datasets_default_columns(as = "character")
datasets_col_char
#>  [1] "uuid"                                "hubmap_id"                          
#>  [3] "group_name"                          "dataset_type_additional_information"
#>  [5] "dataset_type"                        "organ"                              
#>  [7] "analyte_class"                       "dataset_processing_category"        
#>  [9] "sample_category"                     "registered_by"                      
#> [11] "status"                              "pipeline"                           
#> [13] "last_modified_timestamp"             "donor_hubmap_id"

samples_default_columns(), donors_default_columns(), collections_default_columns(), and publications_default_columns() work same as above.

A brief overview of selected information for five entity categories is:

tbl <- bind_cols(
    dataset = datasets_default_columns(as = "character"),
    sample = c(samples_default_columns(as = "character"), rep(NA, 7)),
    donor = c(donors_default_columns(as = "character"), rep(NA, 6)),
    collection = c(collections_default_columns(as = "character"),
                    rep(NA, 10)),
    publication = c(publications_default_columns(as = "character"),
                    rep(NA, 7))
)

tbl
#> # A tibble: 14 × 5
#>    dataset                             sample       donor collection publication
#>    <chr>                               <chr>        <chr> <chr>      <chr>      
#>  1 uuid                                uuid         hubm… uuid       uuid       
#>  2 hubmap_id                           hubmap_id    uuid  hubmap_id  hubmap_id  
#>  3 group_name                          group_name   grou… title      title      
#>  4 dataset_type_additional_information sample_cate… Sex   last_modi… publicatio…
#>  5 dataset_type                        organ        Age   NA         last_modif…
#>  6 organ                               last_modifi… Body… NA         publicatio…
#>  7 analyte_class                       donor_hubma… Race  NA         publicatio…
#>  8 dataset_processing_category         NA           last… NA         NA         
#>  9 sample_category                     NA           NA    NA         NA         
#> 10 registered_by                       NA           NA    NA         NA         
#> 11 status                              NA           NA    NA         NA         
#> 12 pipeline                            NA           NA    NA         NA         
#> 13 last_modified_timestamp             NA           NA    NA         NA         
#> 14 donor_hubmap_id                     NA           NA    NA         NA

Use organ() to read through the available organs included in HuBMAP. It can be helpful to filter retrieved data based on organ information.

organs <- organ()
organs
#> # A tibble: 43 × 2
#>    abbreviation name                 
#>    <chr>        <chr>                
#>  1 BD           Blood                
#>  2 BL           Bladder              
#>  3 BM           Bone Marrow          
#>  4 BR           Brain                
#>  5 BV           Blood Vasculature    
#>  6 HT           Heart                
#>  7 LA           Larynx               
#>  8 LB           Bronchus (Left)      
#>  9 LE           Eye (Left)           
#> 10 LF           Fallopian Tube (Left)
#> # ℹ 33 more rows

Data Wrangling Examples

Data wrangling and filter are welcome to retrieve data based on interested information.

# Example from datasets()
datasets_df |>
    filter(organ == 'Small Intestine') |>
    count()
#> # A tibble: 1 × 1
#>       n
#>   <int>
#> 1   424

Any dataset, sample, donor, collection, and publication has special HuBMAP ID and UUID, and UUID is the main ID to be used in most of functions for specific detail retrievals.

The column of donor_hubmap_id is included in the retrieved tibbles from samples() and datasets(), which can help to join the tibble.

donors_df <- donors()
donor_sub <- donors_df |>
    filter(Sex == "Female",
            Age <= 76 & Age >= 55,
            Race == "White",
            `Body Mass Index` <= 25,
            last_modified_timestamp >= "2020-01-08" &
            last_modified_timestamp <= "2020-06-30") |>
    head(1)

# Datasets
donor_sub_dataset <- donor_sub |>
    left_join(datasets_df |>
                select(-c(group_name, last_modified_timestamp)) |>
                rename("dataset_uuid" = "uuid",
                        "dataset_hubmap_id" = "hubmap_id"),
                by = c("hubmap_id" = "donor_hubmap_id"))

donor_sub_dataset
#> # A tibble: 0 × 19
#> # ℹ 19 variables: uuid <chr>, hubmap_id <chr>, group_name <chr>, Sex <chr>,
#> #   Age <dbl>, Body Mass Index <dbl>, Race <chr>,
#> #   last_modified_timestamp <chr>, dataset_uuid <chr>, dataset_hubmap_id <chr>,
#> #   dataset_type <chr>, dataset_type_additional_information <chr>, organ <chr>,
#> #   analyte_class <chr>, sample_category <chr>, status <chr>,
#> #   dataset_processing_category <chr>, pipeline <chr>, registered_by <chr>

# Samples
samples_df <- samples()
donor_sub_sample <- donor_sub |>
    left_join(samples_df |>
                select(-c(group_name, last_modified_timestamp)) |>
                rename("sample_uuid" = "uuid",
                        "sample_hubmap_id" = "hubmap_id"),
                by = c("hubmap_id" = "donor_hubmap_id"))

donor_sub_sample
#> # A tibble: 0 × 12
#> # ℹ 12 variables: uuid <chr>, hubmap_id <chr>, group_name <chr>, Sex <chr>,
#> #   Age <dbl>, Body Mass Index <dbl>, Race <chr>,
#> #   last_modified_timestamp <chr>, sample_uuid <chr>, sample_hubmap_id <chr>,
#> #   sample_category <chr>, organ <chr>

You can use *_detail(uuid) to retrieve all available information for any entry of any entity category given UUID. Use select() and unnest_*() functions to expand list-columns. It will be convenient to view tables with multiple columns but one row using glimpse().

dataset_uuid <- datasets_df |>
    filter(dataset_type == "Auto-fluorescence",
            organ == "Kidney (Right)") |>
    head(1) |>
    pull(uuid)

# Full Information
dataset_detail(dataset_uuid) |> glimpse()
#> Rows: 1
#> Columns: 35
#> $ ancestor_ids                     <list> <"de1076a42144debd94ba4f5d1f9b6d57",…
#> $ ancestors                        <list> [["de1076a42144debd94ba4f5d1f9b6d57"…
#> $ contacts                         <list> [["Biomolecular Multimodal Imaging C…
#> $ contains_human_genetic_sequences <lgl> FALSE
#> $ contributors                     <list> [["Biomolecular Multimodal Imaging Ce…
#> $ created_by_user_displayname      <chr> "HuBMAP Process"
#> $ created_by_user_email            <chr> "hubmap@hubmapconsortium.org"
#> $ created_timestamp                <dbl> 1.711126e+12
#> $ creation_action                  <chr> "Create Dataset Activity"
#> $ data_access_level                <chr> "public"
#> $ dataset_type                     <chr> "Auto-fluorescence"
#> $ descendant_ids                   <list> "61530ed23518ee5f6cdaa818e91dde65"
#> $ descendants                      <list> [["Auto-fluorescence [Image Pyramid]…
#> $ description                      <chr> "Autofluorescence Microscopy collecte…
#> $ display_subtype                  <chr> "Auto-fluorescence"
#> $ doi_url                          <chr> "https://doi.org/10.35079/HBM223.DJQM…
#> $ donor                            <list> ["Jamie Allen", "jamie.l.allen@vander…
#> $ entity_type                      <chr> "Dataset"
#> $ group_name                       <chr> "Vanderbilt TMC"
#> $ group_uuid                       <chr> "73bb26e4-ed43-11e8-8f19-0a7c1eab007a"
#> $ hubmap_id                        <chr> "HBM223.DJQM.264"
#> $ immediate_ancestor_ids           <list> "de1076a42144debd94ba4f5d1f9b6d57"
#> $ immediate_descendant_ids         <list> "61530ed23518ee5f6cdaa818e91dde65"
#> $ index_version                    <chr> "3.6.1"
#> $ ingest_metadata                  <list> [[["a9099c6", "https://github.com/hub…
#> $ last_modified_timestamp          <dbl> 1.71691e+12
#> $ metadata                         <list> ["Axio Scan.Z1", "Zeiss Microscopy", …
#> $ origin_samples                   <list> [["Jamie Allen", "jamie.l.allen@vande…
#> $ provider_info                    <chr> "VAN0042-RK-3 block AF : ./VAN0042-R…
#> $ published_timestamp              <dbl> 1.715267e+12
#> $ registered_doi                   <chr> "10.35079/HBM223.DJQM.264"
#> $ source_samples                   <list> [["Jamie Allen", "jamie.l.allen@vand…
#> $ status                           <chr> "Published"
#> $ title                            <chr> "Auto-fluorescence data from the kidn…
#> $ uuid                             <chr> "993bb1d6fa02e2755fd69613bb9d6e08"

# Specific Information
dataset_detail(uuid = dataset_uuid) |>
    select(contributors) |>
    unnest_longer(contributors) |>
    unnest_wider(everything())
#> # A tibble: 16 × 11
#>    affiliation              display_name email first_name is_contact is_operator
#>    <chr>                    <chr>        <chr> <chr>      <chr>      <chr>      
#>  1 Biomolecular Multimodal… Jamie L. Al… jami… Jamie      No         Yes        
#>  2 Delft Center for System… Lukasz Migas l.g.… Lukasz     No         Yes        
#>  3 Biomolecular Multimodal… Nathan Heat… nath… Nathan     No         Yes        
#>  4 Biomolecular Multimodal… Jeffrey M. … jeff… Jeffrey    Yes        No         
#>  5 Delft Center for System… Leonor Tide… l.e.… Leonoor    No         Yes        
#>  6 Delft Center for System… Raf Van de … Raf.… Raf        No         No         
#>  7 Biomolecular Multimodal… Melissa A. … meli… Melissa    No         Yes        
#>  8 Biomolecular Multimodal… Madeline E.… made… Madeline   No         Yes        
#>  9 Biomolecular Multimodal… Ellie L. Pi… elli… Ellie      No         Yes        
#> 10 Delft Center for System… Felipe Moser f.a.… Felipe     No         Yes        
#> 11 Division of Nephrology … Mark deCaes… mark… Mark       No         Yes        
#> 12 Division of Nephrology … Agnes B. Fo… agne… Agnes      No         Yes        
#> 13 Division of Nephrology … Haichun Yang haic… Haichun    No         Yes        
#> 14 Biomolecular Multimodal… Tina Tsui    tina… Tina       No         Yes        
#> 15 Biomolecular Multimodal… Katerina V.… kate… Katerina   No         Yes        
#> 16 Biomolecular Multimodal… Allison B. … alli… Allison    No         Yes        
#> # ℹ 5 more variables: is_principal_investigator <chr>, last_name <chr>,
#> #   metadata_schema_id <chr>, middle_name_or_initial <chr>, orcid <chr>

sample_detail(), donor_detail(), collection_detail(), and publication_detail() work same as above.

Metadata

To retrieve the metadata for Dataset, Sample, and Donor metadata, use dataset_metadata(), sample_metadata(), and donor_metadata().

dataset_metadata("993bb1d6fa02e2755fd69613bb9d6e08")
#> New names:
#>  `` -> `...1`
#> # A tibble: 22 × 2
#>    Key                              Value                    
#>    <chr>                            <chr>                    
#>  1 acquisition_instrument_model     "Axio Scan.Z1"           
#>  2 acquisition_instrument_vendor    "Zeiss Microscopy"       
#>  3 analyte_class                    "Endogenous fluorophore" 
#>  4 antibodies_path                  "extras/antibodies.tsv"  
#>  5 contributors_path                "extras/contributors.tsv"
#>  6 data_path                        "."                      
#>  7 dataset_type                     "Auto-fluorescence"      
#>  8 intended_tile_overlap_percentage ""                       
#>  9 is_image_preprocessing_required  "no"                     
#> 10 is_targeted                      "No"                     
#> # ℹ 12 more rows

sample_metadata("8ecdbdc3e2d04898e2563d666658b6a9")
#> # A tibble: 5 × 2
#>   Key                              Value                        
#>   <chr>                            <chr>                        
#> 1 donor.Age                        "71.0 years"                 
#> 2 donor.Apolipoprotein E phenotype "Apolipoprotein E phenotype "
#> 3 donor.Pathology note             "Pathology note "            
#> 4 donor.Race                       "White "                     
#> 5 donor.Sex                        "Male "

donor_metadata("b2c75c96558c18c9e13ba31629f541b6")
#> # A tibble: 8 × 2
#>   Key                 Value                      
#>   <chr>               <chr>                      
#> 1 Age                 "41.0 years"               
#> 2 Body Mass Index     "37.10 kg/m2"              
#> 3 Cause of Death      "Cerebrovascular accident "
#> 4 Death Event         "Natural causes "          
#> 5 Mechanism of Injury "Intracranial hemorrhage " 
#> 6 Race                "White "                   
#> 7 Sex                 "Female "                  
#> 8 Social History      "Smoker "

Derived Data

Some datasets from Dataset entity has derived (support) dataset(s). Use dataset_derived() to retrieve. A tibble with selected details will be retrieved as if the given dataset has support dataset; otherwise, nothing returns.

# no derived/support dataset
dataset_uuid_1 <- "3acdb3ed962b2087fbe325514b098101"

dataset_derived(uuid = dataset_uuid_1)
#> NULL

# has derived/support dataset
dataset_uuid_2 <- "baf976734dd652208d13134bc5c4594b"

dataset_derived(uuid = dataset_uuid_2) |> glimpse()
#> Rows: 1
#> Columns: 6
#> $ uuid                    <chr> "bbbf5a5b29986dd57910daab00193f35"
#> $ hubmap_id               <chr> ""
#> $ data_types              <chr> ""
#> $ dataset_type            <chr> "Histology [Image Pyramid]"
#> $ status                  <chr> ""
#> $ last_modified_timestamp <chr> "NA"

Sample and Donor have derived samples and datasets. In HuBAMPR package, sample_derived() and donor_derived() functions are available to use to see the derived datasets and samples from one sample given sample UUID or one donor given donor UUID. Specify entity_type parameter to retrieve derived Dataset or Sample.

sample_uuid <- samples_df |>
    filter(last_modified_timestamp >= "2023-01-01" &
            last_modified_timestamp <= "2023-10-01",
            organ == "Kidney (Left)") |>
    head(1) |>
    pull(uuid)

sample_uuid
#> [1] "c40774aa2f52a2811db15c5ca1949314"

# Derived Datasets
sample_derived(uuid = sample_uuid, entity_type = "Dataset")
#> # A tibble: 12 × 2
#>    uuid                             derived_dataset_count
#>    <chr>                                            <int>
#>  1 4fddf6de0f42a7e2648b547affefc234                     1
#>  2 b6fd505b8e8e1829a2783570f9f25256                     0
#>  3 c3db2027e148e92fecb85e7d6a1fd708                     1
#>  4 3a10030d3323e5353cfdc3ada45cad86                     0
#>  5 71642e4c4a9cc12f59f3317b4a19adc9                     1
#>  6 bd42ab2f422e45ce6b0f3f55171de8aa                     0
#>  7 c8ad223f01b45b25e0dcb07c48a42762                     1
#>  8 f7b49444b974c98c6300e0bfe5fc3a75                     0
#>  9 beb1b65624fe85b527ee2ce80ef208b2                     1
#> 10 c25d6febe5b007ad32bc59246c99833d                     0
#> 11 744647801573d1d5700ee7523089734c                     1
#> 12 4a98c43ab3b20b06c11dfbed5fd9034b                     0

# Derived Samples
sample_derived(uuid = sample_uuid, entity_type = "Sample")
#> # A tibble: 3 × 2
#>   uuid                             organ        
#>   <chr>                            <chr>        
#> 1 ec54b7d4ab4545166a0d121b3dc1ec3f Kidney (Left)
#> 2 ae98f6ca4f1f9950f7e7e1dedc2acc10 Kidney (Left)
#> 3 b099a37195f532e4b384020dc0e94bb5 Kidney (Left)

donor_derived() works same as above.

Provenance Data

For individual entries from Dataset and Sample entities, uuid_provenance() helps to retrieve the provenance of the entry as a list of characters (UUID, HuBMAP ID, and entity type) from the most recent ancestor to the furthest ancestor. There is no ancestor for Donor UUID, and an empty list will be returned.

# dataset provenance
dataset_uuid <- "3e4c568d9ce8df9d73b8cddcf8d0fec3"
uuid_provenance(dataset_uuid)
#> [[1]]
#> [1] "eba120ab7bbd864a6f6f3ad41e598d25, Sample"
#> 
#> [[2]]
#> [1] "468d73d28b9e8c43ffa5fbd56d8e46e3, Sample"
#> 
#> [[3]]
#> [1] "1c749716d32310351cb9557c7e2937a0, Sample"
#> 
#> [[4]]
#> [1] "c09f875545a64694d70a28091ffbcf8b, Donor"

# sample provenance
sample_uuid <- "35e16f13caab262f446836f63cf4ad42"
uuid_provenance(sample_uuid)
#> [[1]]
#> [1] "0b43d8d0dbbc5e3923a8b963650ab8e3, Sample"
#> 
#> [[2]]
#> [1] "eed96170f42554db84d97d1652bb23ef, Sample"
#> 
#> [[3]]
#> [1] "1628b6f7eb615862322d6274a6bc9fa0, Donor"

# donor provenance
donor_uuid <- "0abacde2443881351ff6e9930a706c83"
uuid_provenance(donor_uuid)
#> list()

Each Collection has related datasets, and use collection_data() to retrieve.

collections_df <- collections()
collection_uuid <- collections_df |>
    filter(last_modified_timestamp >= "2023-01-01") |>
    head(1) |>
    pull(uuid)

collection_data(collection_uuid)
#> # A tibble: 211 × 7
#>    uuid     hubmap_id dataset_type_additio…¹ dataset_type last_modified_timest…²
#>    <chr>    <chr>     <chr>                  <chr>        <chr>                 
#>  1 59c8093… HBM296.N… MIBI                   MIBI         2023-03-09            
#>  2 09dcc99… HBM374.N… MIBI                   MIBI         2023-03-09            
#>  3 c0ede74… HBM255.F… MIBI                   MIBI         2023-03-09            
#>  4 18a68d8… HBM297.D… MIBI                   MIBI         2023-03-09            
#>  5 4e6a2c1… HBM495.D… MIBI                   MIBI         2023-03-09            
#>  6 f5619b5… HBM452.K… MIBI                   MIBI         2023-03-09            
#>  7 2b56f0f… HBM887.D… MIBI                   MIBI         2023-03-09            
#>  8 54eec38… HBM439.H… MIBI                   MIBI         2023-03-09            
#>  9 b77be62… HBM225.P… MIBI                   MIBI         2023-03-09            
#> 10 36a80d4… HBM367.Q… MIBI                   MIBI         2023-03-09            
#> # ℹ 201 more rows
#> # ℹ abbreviated names: ¹​dataset_type_additional_information,
#> #   ²​last_modified_timestamp
#> # ℹ 2 more variables: status <chr>, organ <chr>

Each publication has related datasets, samples, and donors, and use publication_data() to see, while specifying entity_type parameter to retrieve derived Dataset or Sample.

publications_df <- publications()
publication_uuid <- publications_df |>
    filter(publication_venue == "Nature") |>
    head(1) |>
    pull(uuid)

publication_data(publication_uuid, entity_type = "Dataset")
#> # A tibble: 1 × 2
#>   dataset_type uuid                            
#>   <chr>        <chr>                           
#> 1 CODEX        3a4fb23a49fba2647dba2b8f57976d25

publication_data(publication_uuid, entity_type = "Sample")
#> # A tibble: 3 × 2
#>   dataset_type uuid                            
#>   <chr>        <chr>                           
#> 1 Sample       5ded68dde822d1c03ee04fe58b978a7e
#> 2 Sample       ecca7757c924f2380669a15555d35a5d
#> 3 Sample       5d079766bf17544745c38d88d6923dbf

Additional Information

To read the textual description of one Collection or Publication, use collection_information() or publication_information() respectively.

collection_information(uuid = collection_uuid)
#> Title
#>   Spatiotemporal coordination at the maternal-fetal interface promotes trophoblast invasion and vascular remodeling in the first half of human pregnancy 
#>  Description
#>   Beginning in the first trimester, fetally derived extravillous trophoblasts (EVTs) invade the uterus and remodel its spiral arteries, transforming them into large, dilated blood vessels left with a thin, discontinuous smooth muscle layer and partially lined with EVTs. Several mechanisms have been proposed to explain how EVTs coordinate with the maternal decidua to promote a tissue microenvironment conducive to spiral artery remodeling (SAR). However, it remains a matter of debate which immune and stromal cell types participate in these interactions and how this process evolves with respect to gestational age. Here, we used a multiomic approach that combined the strengths of spatial proteomics and transcriptomics to construct the first spatiotemporal atlas of the human maternal-fetal interface in the first half of pregnancy. We used multiplexed ion beam imaging by time of flight (MIBI-TOF) and a 37-plex antibody panel to analyze ∼500,000 cells and 588 spiral arteries within intact decidua from 66 patients between 6-20 weeks of gestation, integrating this with coregistered transcriptomic profiles. Gestational age substantially influenced the frequency of many maternal immune and stromal cells, with tolerogenic subsets expressing CD206, CD163, TIM-3, Galectin-9, and IDO-1 increasingly enriched and colocalized at later time points. In contrast, SAR progression preferentially correlated with EVT invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting unique monotonic and biphasic trends. Lastly, we developed an integrated model of SAR supporting an intravasation mechanism where invasion is accompanied by upregulation of pro-angiogenic, immunoregulatory EVT programs that promote interactions with vascular endothelium while avoiding activation of immune cells in circulating maternal blood. Taken together, these results support a coordinated model of decidualization in which increasing gestational age drives a transition in maternal decidua towards a tolerogenic niche conducive to locally regulated, EVT-dependent SAR. 
#>  DOI
#>  -  https://doi.org/10.35079/hbm585.qpdv.454 
#>  URL
#>  -  10.35079/hbm585.qpdv.454

publication_information(uuid = publication_uuid)
#> Title
#>  Organization of the human intestine at single-cell resolution
#> Abstract
#>  We investigated the spatial arrangement of individual cells using multiplexed imaging, as well as single-nucleus RNA and open chromatin assays, across eight different regions of the intestine from nine donors. Through comprehensive analyses, we observed significant variations in cell compositions among the intestinal regions and the intricate nature of epithelial subtypes. Furthermore, we discovered that similar cell types form distinct neighborhoods and communities, highlighting the presence of unique immunological niches within the intestine. Additionally, we identified gene regulatory differences within these cells, suggesting the existence of a regulatory differentiation cascade, and established associations between specific cell types and the heritability of intestinal diseases. These findings elucidate the intricate cell composition, regulation, and spatial organization within this organ, providing a valuable reference map for advancing our understanding of human biology and disease.
#> Manuscript
#>  - Nature: https://doi.org/10.1038/s41586-023-05915-x
#> Corresponding Authors
#>  - John Hickey 0000-0001-9961-7673
#> Data Types
#>  - CODEX
#> Organs
#>  - Small Intestine

Some additional contact/author/contributor information can be retrieved using dataset_contributor() for Dataset entity, collection_contact() and collection_contributors() for Collection entity, or publication_authors() for Publication entity.

# Dataset
dataset_contributors(uuid = dataset_uuid)
#> # A tibble: 2 × 11
#>   affiliation               display_name email first_name is_contact is_operator
#>   <chr>                     <chr>        <chr> <chr>      <chr>      <chr>      
#> 1 "University of Californi… Xingzhao Wen xzwe… Xingzhao   Yes        Yes        
#> 2 "University of Californi… Sheng Zhong  szho… Sheng      Yes        No         
#> # ℹ 5 more variables: is_principal_investigator <chr>, last_name <chr>,
#> #   metadata_schema_id <chr>, middle_name_or_initial <chr>, orcid <chr>

# Collection
collection_contacts(uuid = collection_uuid)
#> # A tibble: 2 × 3
#>   name              affiliation                                  orcid_id       
#>   <chr>             <chr>                                        <chr>          
#> 1 Shirley Greenbaum Department of Pathology, Stanford University 0000-0002-0680…
#> 2 Michael Angelo    Department of Pathology, Stanford University 0000-0003-1531…

collection_contributors(uuid = collection_uuid)
#> # A tibble: 13 × 3
#>    name              affiliation                                        orcid_id
#>    <chr>             <chr>                                              <chr>   
#>  1 Shirley Greenbaum Department of Pathology, Stanford University       0000-00…
#>  2 Inna Averbukh     Department of Pathology, Stanford University       0000-00…
#>  3 Erin Soon         Department of Pathology, Stanford University       0000-00…
#>  4 Gabrielle Rizzuto Department of Pathology, UCSF                      0000-00…
#>  5 Noah Greenwald    Department of Pathology, Stanford University       0000-00…
#>  6 Marc Bosse        Department of Pathology, Stanford University       0000-00…
#>  7 Eleni G. Jaswa    Department of Obstetrics, Gynecology & Reproducti… 0000-00…
#>  8 Zumana Khair      Department of Pathology, Stanford University       0000-00…
#>  9 David Van Valen   Division of Biology and Bioengineering, Californi… 0000-00…
#> 10 Leeat Keren       Department of Molecular Cell Biology, Weizmann In… 0000-00…
#> 11 Travis Hollmann   Department of Pathology, Memorial Sloan Kettering… 0000-00…
#> 12 Matt van de Rjin  Department of Pathology, Stanford University       0000-00…
#> 13 Michael Angelo    Department of Pathology, Stanford University       0000-00…

# Publication
publication_authors(uuid = publication_uuid)
#> # A tibble: 3 × 3
#>   name            affiliation         orcid_id           
#>   <chr>           <chr>               <chr>              
#> 1 John Hickey     Stanford University 0000-0001-9961-7673
#> 2 Chiara Caraccio Stanford University 0000-0002-3580-1348
#> 3 Garry Nolan     Stanford University 0000-0002-8862-9043

File Transfer

For each dataset, there are corresponding data files. Most of the datasets’ files are available on HuBMAP Globus with corresponding URL. Some of the datasets’ files are not available via Globus, but can be accessed via dbGAP (database of Genotypes and Phenotypes) and/or SRA (Sequence Read Archive). But some of the datasets’ files are not available in any authorized platform.

Each dataset available on Globus has different components of data-related files to preview and download, include but not limited to images, metadata files, downstream analysis reports, raw data products, etc.

Use bulk_data_transfer() to know whether data files are open-accessed or restricted. Only open-accessed files can be downloaded for downstream analysis.

Files are publicly accessible

HuBMAP stored all public data files on Globus, which is a open-source and safe platform for the large-size data storage. For every dataset which the data files can be publicly accessed, the bulk_data_transfer() function will direct to corresponding Globus webpage in Chrome.

uuid_globus <- "d1dcab2df80590d8cd8770948abaf976"

bulk_data_transfer(uuid_globus)

By selecting the data file and clicking on “Download” button, the data file can be downloaded to the specific directory.

Alternative data transfer method using rglobus package

Martin Morgan, one of the HuBMAPR package creators, generated an experimental package called rglobus.

Globus is in part a cloud-based file transfer service, available at https://www.globus.org/. This package provides an R client with the ability to discover and navigate collections, and to transfer files and directories between collections. Therefore, rglobus is an alternative method to transfer HuBMAP data files on the local computer using HuBMAP dataset UUID.

rglobus has the vignette documentation here using HuBMAP collection as the main example to illustrate how to discover and navigate the correct collection, and transfer the files.

Since rglobus is an experimental package, the functionality may not be complete. It is possible to see transfer issues while using functions. There will be more information updated in the future. You are welcome to report any issue or provide any comment here to help us develop.

Files are restricted

For every dataset which the data files are restricted under dbGAP or SRA, the bulk_data_transfer() function will print out the instruction messages. The dbGaP or/and SRA link(s) allow the users to request the protected-access sequence data from authenticated platform.

uuid_dbGAP_SRA <- "d926c41ac08f3c2ba5e61eec83e90b0c"

bulk_data_transfer(uuid_dbGAP_SRA)
Pruning cache
Error in bulk_data_transfer(uuid_dbGAP_SRA) :
This dataset contains protected-access human sequence data.
If you are not a Consortium member,
you must access these data through dbGaP if available.
dbGaP authentication is required for downloading.
View documentation on how to attain dbGaP access.
Additional Help: 'https://hubmapconsortium.org/contact-form/'
Navigate to the 'Bioproject' or 'Sequencing Read Archive' links.
dbGaP URL: 
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002267
Select the 'Run' link on the page to download the dataset.
Additional documentation: https://www.ncbi.nlm.nih.gov/sra/docs/.
SRA URL: https://www.ncbi.nlm.nih.gov/sra/SRX13283313.)
Files are unavailable

For every dataset which the data files not available, the bulk_data_transfer() function will print out the messages.

uuid_not_avail <- "0eb5e457b4855ce28531bc97147196b6"

bulk_data_transfer(uuid_not_avail)
Pruning cache
Error in bulk_data_transfer(uuid_not_avail) :
This dataset contains protected-access human sequence data.
Data isn't yet available through dbGaP,
but will be available soon.
Please contact us via 'https://hubmapconsortium.org/contact-form/'
with any questions regarding this data.

R session information

#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8        LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8   
#>  [6] LC_MESSAGES=C.UTF-8    LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C           LC_TELEPHONE=C        
#> [11] LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   
#> 
#> time zone: UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] pryr_0.1.6       HuBMAPR_1.0.6    ggplot2_3.5.1    tidyr_1.3.1      dplyr_1.1.4      BiocStyle_2.34.0
#> 
#> loaded via a namespace (and not attached):
#>  [1] utf8_1.2.4          rappdirs_0.3.3      sass_0.4.9          generics_0.1.3      stringi_1.8.4      
#>  [6] digest_0.6.37       magrittr_2.0.3      evaluate_1.0.3      grid_4.4.2          bookdown_0.42      
#> [11] fastmap_1.2.0       lobstr_1.1.2        jsonlite_1.8.9      whisker_0.4.1       BiocManager_1.30.25
#> [16] purrr_1.0.2         scales_1.3.0        codetools_0.2-20    httr2_1.0.7         textshaping_0.4.1  
#> [21] jquerylib_0.1.4     cli_3.6.3           rlang_1.1.4         munsell_0.5.1       withr_3.0.2        
#> [26] cachem_1.1.0        yaml_2.3.10         tools_4.4.2         colorspace_2.1-1    curl_6.1.0         
#> [31] vctrs_0.6.5         rjsoncons_1.3.1     R6_2.5.1            lifecycle_1.0.4     stringr_1.5.1      
#> [36] fs_1.6.5            ragg_1.3.3          pkgconfig_2.0.3     desc_1.4.3          pkgdown_2.1.1      
#> [41] pillar_1.10.1       bslib_0.8.0         gtable_0.3.6        glue_1.8.0          Rcpp_1.0.14        
#> [46] systemfonts_1.2.0   xfun_0.50           tibble_3.2.1        tidyselect_1.2.1    knitr_1.49         
#> [51] farver_2.1.2        htmltools_0.5.8.1   labeling_0.4.3      rmarkdown_2.29      compiler_4.4.2     
#> [56] prettyunits_1.2.0